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Abstract--Hydrodynamic forces and velocities of  spheroidal particles in a simple shear flow near a solid 
wall are calculated by a variant of  the boundary integral equation method, combined with the use of the 
reciprocal theorem for Stokes flow equations. 

It is shown that the effect of  the wall decreases with increasing particle nonsphericity (decreasing aspect 
ratio). For long slender particles the effective distance where the wall effect is significant is measured by 
several particle shorter axes. In the vicinity of  the wall spheroids experience several interactions, which 
do not exist for spheres. These are the lift force component perpendicular to the wall and the 
corresponding rotational-translational coupling component of  the resistance tensor. 

The data on particle hydrodynamic interactions are used to calculate the velocities o f  the inertialess 
spheroidal particles in a shear flow near a wall. The calculations reveal that the effect of the wall is to 
create a nonzero velocity component in the direction of  the normal to the wall surface. This velocity is 
zero for spheroids in a free shear flow; near the wall it vanishes for spherical and, seemingly, for oblong 
particles. Therefore a spheroid moving in a shear flow near the wall will perform an oscillatory motion 
towards and away from the wall. The wall will retard the particle motion parallel to its surface, albeit 
in a lesser extent than for spheres. In addition, spheroidal particles will perform periodic rotational motion, 
as they do in an unbounded shear flow, however, with larger periods. For  force components which act 
on spheres, as well as on nonspherical particles the wall effect is most pronounced for particles whose 
shape is close to spherical. 

Several correlation formulae are proposed for the forces and torques acting on spheroids, as well as 
for their friction tensor coefficients. Copyright © 1996 Elsevier Science Ltd. 

Key Words: spheroidal particles, hydrodynamic resistance tensor, orientation, wall effect, lift and 
retardation velocities, rotational period 

1. I N T R O D U C T I O N  

Hydrodynamic interactions and transport of particles in flows are governed by their shapes. This 
factor significantly affects trajectories of particles moving in various flow fields under the influence 
of external forces. Small micrometer and submicrometer particles oftentimes possess shapes which 
significantly differ from spherical. Examples can be provided by fibrous aerosol particles generated 
in wool and cotton industries, asbestos particles, which received much attention in the literature 
because of their hazardous effect on human health. Other examples of nonspherical particles 
include red blood cells, large polymer molecules, fractal agglomerates, etc. 

Motion of nonspherical particles in an infinite fluid has been extensively studied (see, e.g. Happel 
and Brenner 1983; Kim and Karrila 1991). Proximity of solid walls and/or free boundaries produce 
additional difficulties in obtaining analytical solutions for forces acting on nonspherical particles 
moving in viscous flows. However, in numerous industrial, technological and physiological 
applications particles often move close to solid walls. To name a few one can mention motion of 
aerosol particles in human and animals' respiratory tracks, in the vicinity of wafers during VLSI 
production, in sampling tubes (Ingham and Yan 1994), spectrometers and porous filters. 
Liquidborne particles experience wall interactions during their motion through various narrow 
constrictions, e.g. blood cells flowing in arteries; macromolecules moving in porous membranes, 
etc. 

This work is devoted to investigation of hydrodynamic interactions between a nonspherical 
particle moving in a shear flow and a plane solid wall. The simple shear flow is met in lubrication 
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bearings; moreover, its importance is generally understood in connection with various flow 
situations, where the velocity distribution in the proximity to impermeable walls can be 
approximated as a linear function of the normal coordinate. These are flows in turbulent and 
laminar boundary layers, tubes, in the vicinity of sedimenting larger particles, etc. Generally, one 
can assume a simple shear to prevail near a solid wall in calculation of particle-wall viscous 
hydrodynamic interactions when the particle size a is significantly less than the dimension d of the 
vessel (e.g. tube diameter, channel width), or thickness d of the dynamic boundary layer (Shapiro 
and Goldenberg 1993; Bernstein and Shapiro 1994). 

Theoretical analysis of particle motion in a quiescent fluid near a wall have been obtained for 
spherical particle shape in semi-infinite geometries (Brenner 1961; O'Neill 1964; Goldman et al. 
1967a,b) and bounded geometries (Ganatos et al. 1980). Jeffrey and Onishi (1981) considered 
cylindrical particles near a plane wall. More complicated nonspherical particle geometries generally 
do not allow analytical solutions. Numerical methods employed in various investigations include 
distribution of Stokeselets, potential sources (Dabros 1985) and spherical singularities combined 
with the collocation technique (Yuan and Wu 1987; Keh and Tseng 1994) and boundary integral 
method (Hsu and Ganatos 1989; Gavze 1990b). 

In this work an efficient method for calculating forces acting on particles placed in Stokes' flow 
fields is proposed. The technique is a variant of the boundary integral method used by Hsu and 
Ganatos (1989) albeit modified by application of the reciprocal theorem (Happel and Brenner 
1983). This procedure reduces by half the amount of computations needed by a direct application 
of the boundary integral equation. This method is used for calculation of forces and torques acting 
on prolate spheroidal particles located at various distances and inclined at various angles near a 
wall. Explicitly, the specific goals of this study are (i) investigate the influence of nonsphericity, 
characterized by the aspect ratio, on the viscous forces and torques acting on the particles fixed 
near a wall; (ii) calculate the velocities of inertialess particles; and (iii) propose correlations for the 
particle forces and torques. These will prove useful in various applications, including computing 
particle trajectories in various flow conditions. 

2. MATHEMATICAL FORMULATION 

In this section we derive the set of equations determining the force and torque acting on a rigid 
body suspended in a flow in the vicinity of a plane wall, and the equations for the velocities of 
non-inertial particles. 

2.1. Integral representation of  the flow field 

Let f~ be a domain in the half space x3 > 0 enclosed within the boundary Z composed of a 
subdomain E~ of the plane x3 = 0 and of Y~: = Ep w E~, i.e. the particle's surface Ep and the 
boundary Z~. Both E~. and E~ surround the particle as shown in figure 1. 

x3(z) 
\ 

x 

Figure 1. Schematic of a spheroidal particle moving in a shear flow near a solid wall. 
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Let (V, p) be any solution of the Stokes equations in f2 with the velocity components V, vanishing 
on E, 

#AVe-  0p ~ 3 ~ - 0 ,  V~[~,=0, i =  1,2,3. [la,b,c] 
OXi ' ~Xj 

Then using the integral representation of the solution of Stokes equation (Ladyzhenskaya 1963) 
one can express V = Vke, in the following form 

Vk= ; Uk,(x,y)aij(V,p)nidy- ; Ga~(Uk,qk)(x,y)n, dy. 
I t'; ~2 2 

[2] 

The second integral in the r.h.s, of [2] vanishes on E, due to the boundary condition [lc]. 
In formula [2] (U,, q,) is the fundamental solution for the velocity and pressure of the Stokes 

equations in the infinite unbounded space: 

1 [ ~  (xk-yk)(x , -y , )]  
Uk,(x, y) = ~ + [ x ~ 3 -  , [3a] 

1 y k  - -  Xk [3b] 
qk(x, y) -- 4re Ix -- yl 3' 

That is Uk,(x, y) is the kth component of the velocity at a point x due to a unit force applied at 
a point y in the j th  direction. In addition, Ix - Yl is Euclidean distance between the points x and 
y and a0 is the stress tensor operator 

o , ( V . p )  = ex,)- [4] 

where # is the viscosity. U~(x, y) and a~(U~, qk) appearing in [2] are the kernels of the single- and 
double-layer potentials (Ladyzhenskaya 1963), with the latter given by 

3 (x~ - y,)(xj - yj)(xk - yk) 
a,j(Uk, qk) = ~ Ix -- y[' [5] 

Equation [2] involves integration on both ~, (a subdomain of the plane x3 = 0) and 22. It can 
be simplified to involve only integration on 22 by introduction of the Green's function for the half 
space x3/> 0 (Blake 1971). The Green's function consists of a velocity tensor field Gkv(x, y) and a 
pressure vector g,(x, y). The pair (G, g) satisfies the Stokes equation in the half space x3 > 0 and 
the boundary condition 

(Uki ~- GkO x3=0 = (Uk, + G,~) .,3 =0 = 0. 
lY3 > 0 x 3 > 0 

[6] 

Thus, for every V and p satisfying the Stokes equations in f~ and vanishing on E, an alternative 
representation is obtained with the aid of the reciprocal theorem (Happel and Brenner 1983) 

Vk(x)=fz [Uk~(x,y) + Gk~(x,y)]~p~(y)dy- fz V~a,(Uk+Gk, qk+gk)n~dy [7] 
2 2 

(Gavze 1990b; Hsu and Ganatos 1989). Here ~p~(i = 1, 2, 3) given by 

~p~(y) = a,(V, p)n/ [81 

are the stress vector components on the surface of the body. In the following we will extend the 
boundary E~ to infinity, whereas Zj will become the whole plane x3 = 0. We consider solutions 
which vanish at infinity so that the integrals over Eoo in [7] vanish. Equation [7] may be used to 
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calculate the force and torque acting on a rigid body immersed in any (rather than quiescent) Stokes 
flow velocity W prevailing in the half space x3 > 0 (for example, shear flow). 

Suppose a body is moving in the fluid with a translational velocity Uf and an angular velocity 
o)). Define a Stokes flow field V,(x) which satisfies the following boundary conditions 

V,I,., o = O, V~I~, = U~ + e,ik~O~Xk -- W,l~,, V, Iz~ = 0. [9] 

The total flow accounting for the presence of the body is given by V + W. It may be shown, that 
since the velocity W is the solution for the Stokes equations in the half space x3 > 0, it does not 
contribute to the force and torque, acting on the body. When x in [7] tends to the boundary Zp, 
the following equation is obtained for ~oe due to the discontinuity of the double layer potential 
(Ladyzhenskaya 1963) 

IVk(X) = / [Uk,(X, y) + Gk,(X, y)]q0i(y)dy -- / Vitr,y(Uk + Gk, q~ + gk)n/dy.  [10] 
p p 

Equation [10] is a Fredholm integral equation of the first kind for the unknown stresses ~o,. The 
velocity Vi on Ep is given in [9]. In the above notation n is the outer normal to fL i.e. the inner 
normal to the body so that q)i are the stresses that the body exerts upon the fluid. 

Equation [10] was used by Hsu et al. (1989). It requires the computation of the two integrals 
in the r.h.s, of [10]. 

2.2. The reciprocal theorem method  (r . t .m.)  

The reciprocal theorem enables to apply an alternative procedure in which only computation 
of the single layer potential is needed. The method is based on the choice of some basic flow fields 
and application of the reciprocal theorem on these fields and the field V [9] (Karrila and Kim 1989; 
Gavze 1990a). 

Define the "basic solutions" (V k, pk) and (W k, qk) which satisfy the Stokes equations [1] in fL 
subject to the following boundary conditions 

V~I~o = 6ik, V~I,3-0 = 0, V~lz~ = 0, [lla] 

W~lzp = e~ilf~jx, = e~k,x,, W~lx,=0 = O, W~lz~ = O. [1 lb] 

(V k, pk) is the flow field caused by the translation of the particles in the kth direction in a quiet 
fluid, (W k, qk) is the flow field caused by its rotation in the kth direction. In the following we will 
denote the stresses on Zp by 

ok, = a,j(Vk, pk)n/lz,, ~ =- ~i](W k, qk)njlz,, [12] 

where ~ ,  ff~ are the ith component of the stress due to translation and rotation in the kth direction, 
respectively. 

Define the translation, coupling and rotation tensors, K, C, f~ in the same way as for an 
unbounded fluid (Happel and Brenner 1973), with the exception that in the present circumstances 
they depend on the particle's distance from the wall and its orientation 

K,k = -- fz ~b~ dy, 
p 

[13a] 

p p 

f2,k = -- fz e,,,,y,,t)f dr. [13c] 
p 
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K and f l  are symmetric tensors, which property and the equality between the two expressions 
of C~k in [13b] follow from the reciprocal theorem (Happel and Brenner 1983). 

We will further provide expressions for the force and the torque acting on a particle placed in 
an arbitrary Stokes' flow, the velocity of which vanishes on x3 = 0. Applying the reciprocal theorem 
to the flow velocities V~ and V~ given by [9] and [lla], respectively, we get 

~ V~a~j(Vk, pk)nj dy = f~p V¢a~(V, p)nj dy. [14] 

After substitution of the boundary conditions [11], [9] the r.h.s, of [14] yields the force component 
J; 

f ~ao(V,p)nj dy = 6~k f~ a~(V,p)n/dy =J~, 
P P 

and the 1.h.s. will be 

V~a~/(Vk)nj dy = ( -  IV,. + U b + E,,m~o,y,,)~b~ dy = - W~q~ dy - UbKik -- co~C~k. 
P P P 

Therefore, the force exerted on the body is given by 

J~ = - fz W~b~ dy - U~K~ - w~C,k. 
P 

In the same manner we get the expression for the torque components 

[15] 

tk = -- f~ W~,~ dy - U~ Cki- O~,~gk. 
P 

[16] 

A more general version of these relations, valid for unsteady flows in an unbounded fluid is given 
in Gavze (1990a). Equations [13], [15] and [16] show that the only unknown in the expressions for 
J~ and tk are the surface stresses of the six basic solutions [11]. These stresses may be obtained by 
solving integral equation [10]. Basing on the discontinuity of the double layer potential 
(Ladyzhenskaya 1963) it may be easily shown that for x ~ fl the double layer potential term, i.e. 
the second integral in the r.h.s, of [7], vanishes for any solution (V, p) which on the particle surface 
Ep yields the rigid body velocity. In particular, it vanishes upon substituting (V k, pk) and (W k, qk) 
in place of (V, p). Using this and the continuity of the single layer potential one can pass to the 
limit x ~ Ep to obtain the following set of equations for ~b~ and ~,~ 

V~lzp = 6,k = f~ [Uo(x, y) + Go(x, y)]q~ dy x ~ Zp, [17a] 
P 

r 
= E,k,X, = [ [U~j(x, y) + G~j(x, y)]qJ~ dy x s Ep. [17b] 

P 

Further we will change the notation of the Cartesian components (x,, x2, x3) --~ (x, y, z) and of the 
velocity components (u~, u3, o~2) ~ (u, w, co). 

2.3. Numerical solution 

Calculations were performed for prolate spheroids, whose axes of symmetry lie in the x - z  plane. 
Denote by 0 the angle between the particle's symmetry axis and the z-axis (see figure 1). The surface 
of the particle was divided into elements, each of which consists of several flat triangles which have 
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T a b l e  I. C o m p a r i s o n  be tween  numer i ca l  a n d  ana ly t i ca l  resul ts  o f  Jeffery 
(1922) fo r  sphe ro id s  in a s h e a r  f low fa r  f r o m  the  wall  0 = 0 .25n  

F,/l~csz F:/l~csz 7",/l~c3s 

a/c N u m e r .  A n a l y t .  N u m e r .  Ana ly t .  N u m e r .  A n a l y t .  

0.1 6.055 6.088 - 1.088 - 1.098 1.661 1.680 
0.2 7.798 7 .834 - 1.106 - 1.105 2 .310 2.333 
0.35 10.027 10.079 --  1.002 - 0 .999 3.361 3.398 
0.5 12.105 12.172 --  0 .827 - 0 .825 4 .670 4 .728 
0.7 14.789 14.872 --  0 .530 - 0 .529 7 .026 7 .124 
0.8 16.113 16.204 - 0 .363 - 0 .362 8 .536 8 .660 
0.9 17.432 17.529 - 0 .186 - 0 .185 10.309 10.464 
0.95 18.089 18.190 - 0 .095 --  0 .094 11.304 11.476 
0.99 18.614 18.718 - 0.021 - 0 .019 12.155 12.342 
0 .9999 18.744 18.848 0 .002 - 0 .000 12.373 12.564 
0 .999999  18.747 18.850 --  0 .000 - 0 .000 12.434 12.567 

their vertices on the actual surface of the body. In the present case we used 1200 triangles 
comprising 312 elements. The Galerkin method was used to solve [17a,b] with constant base 
functions. System [17] reduces to a finite set of  algebraic equations of the form 

[fJ + ,?-]. 4~ = v ° [181 

for the unknown vector q~, with the latter and the matrices ~ , ~  being discrete forms of their 
corresponding continuous counterparts, appearing in [17] and V ° standing either for V* or W* 
(k = 1, 2, 3). The matrix fJ + ~ is symmetric positive definite, and, therefore, system [18] may be 
solved by any standard computational procedure, even though, the matrix condition number is 
normally large (Gerald and Wheatley 1989). The matrix fJ corresponds to the particle's motion 
in an unbounded fluid and has, therefore, to be calculated only once. The matrix ¢~, depends on 
the location and orientation relative to the plane z = 0. Most of  the computation time is spent on 
constructing the matrix ~; therefore, the use of  [17] instead of  [10] saves approximately 50% of 
the computation time. A more detailed description of the discretization of the equations is given 
in Gavze (1990b). 

The reciprocal theorem method (r.t.m.), when applied to different spheroids in the unbounded 
quiet fluid results in errors of  about 0.5% for the translation tensor K and of 1-2% for the 
rotation tensor f~. We also compare the data obtained by the r.t.m, with the analytical results 
of Oberbeck (see Happel and Brenner 1983; Jeffery 1922; etc.) for prolate spheroids in an 
unbounded shear flow for aspect ratios ranging from 0.1 to 0.999999 (see table 1). The errors 
for F~ and F: are generally less than 1% except for F_- for aspect ratio very close to 1, where 
the analytical results approach zero faster than the numerical data. For  7", the error is no more 
than 1.5%. 

In table 2 we compare the force Fx and the torque T, acting on a sphere in a shear flow near 
a wall with the analytical solution (Goldman et al. 1967b). The error in F, is less than 1% and 
in Ty is less than 1.5%. The free velocities u and co of inertialess spherical particles, are also 
compared in table 2 with the analytical solution of Goldman et al. (1967b). For  particle-wall 

T a b l e  2. C o m p a r i s o n  wi th  the  ana ly t i ca l  so lu t ion  o f  G o l d m a n  et al. (1967b)  for  spher ica l  par t ic les  
in a shea r  f low n e a r  a wall .  F ree  t r a n s l a t i o n a l  (u) a n d  r o t a t i o n a l  (co) velocit ies o f  iner t ia less  

par t ic les .  F o r c e  (F~) a n d  t o r q u e  (7",.) a c t i n g  o n  fixed spher ica l  par t ic les  

u/as og/s F,/6rc#asz ~ /4npa3s 

z/a N u m e r .  A n a l y t .  N u m e r .  Ana ly t .  N u m e r .  A n a l y t .  N u m e r .  Ana ly t .  

1.0453 0 .699 0 .683 0 .350 0 .337 1.654 1.668 0 .935 0.948 
1.1276 0.871 0 .865 0 .396 0 .390 1.603 1.616 0.941 0 .954 
1.5431 1.425 1.423 0 .465 0 .462 1.428 1.439 0.961 0 .974 
2 .3524 2.301 2 .300 0 .492 0 .489 1.269 1.278 0 .977 0 .990 
3 .7622 3.741 3.741 0 .500  0 .497 1.159 1.167 0 .984 0 .997 

10.0677 10.064 10.064 0 .502 0 .500 1.052 1.059 0 .987 1.000 
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(normalized) gap of 0.0453 the error is 3-4%, but for a gap width of  0.1276 it already reduces to 
less than 1.5%. In appendix A we present for the sake of  convenience analytical solutions for K, II, 
Fx, F:, T,, u, co in an unbounded fluid. 

3. RESULTS 

3.1. Forces and torques in a shear f low 

Lift  force. Figure 2 presents the z-component of the force (F-) acting on a particle 
perpendicular to the flow direction (lift force). This force is antisymmetric with respect to 0 -- re/2, 
which may be proven from [la-c] by inverting the flow direction or changing s by - s .  The 
maximum force is attained at the angle 0 = 7t/4, similarly to the case of free shear flow (see 
[A13]). The influence of the wall proximity is to increase this maximum (see figure 2(b)). However, 
this effect depends on the particle aspect ratio and is most pronounced for spheroids with 
a/c ~ 0.35. This means that the effect of the wall on F= for 0 = ~/4 is weak both for oblong 
particles (a/c<<l) and for particles whose shape approaches to spherical ( a / c ~  1. This 
nonmonotonic dependence of F- upon a/c may be rationalized by noting that spherical particles 
experience no lift. On the other hand, with increasing nonsphericity (decreasing a/c) the major 
part of the particle extends far from the wall, where almost free shear flow (i.e. undisturbed by 
the wall-particle interactions) prevails. Therefore, the wall effect is the strongest for moderate 
nonsphericities. 

The above conclusion drawn for 0 = ~/4 is also valid for other angles, excluding 0 = 0 and re/2. 
At these angles F- vanishes due to the linearity of the governing equations [1] and geometrical 
symmetry with respect to z-axis. As a rule of thumb, the effect of the wall extends to the distance 
of  about 5-10 shorter axes, beyond which it may be neglected with the error not exceeding 2-5%. 

The lift force discussed here is a pure viscous force resulting from the combined effect of  particle 
nonsphericity and the wall effect. It should not be mixed with other lift forces, arising from the 
flow inertia (Saffman 1965). 

Drag force E~. An expression for the drag force, which is the component of the viscous force 
parallel to the flow direction in the unbounded flow (-E~) is given in [A13]. The effect of the wall 
is to increase this force with respect to the free shear flow due to no-slip condition imposed on 
the wall surface. This may be seen in figure 3, showing the difference A_E~ = E~ - ~ for 0 = 0. The 
latter difference, called here "wall induced drag force" is less for spheroids (at any orientation) than 
for spherical particles. For  spherical particles one can calculate AFx using the expression (Faxen 
1923; Happel and Brenner 1983): 

+ O(c/z)  3, (a/c = 1), 
15~ ~ I - 9c/(16z) 

where F~ = 6nl~csz. The above expression may be used to express 

9 6rCl~SC 2 
E~ - FS - 16 1 - 9c/(16z) + O(c/z)2' (a/c = 1, c/z ---* 0). [19] 

The wall induced drag force AE~ diminishes with decreasing aspect ratio a/c. This accords with 
a similar trend exhibited by the lift force. Generally, with the longer axis c and z/c fixed, the 
perturbation which a spheroid exerts on the flow diminishes with decreasing a. Consequently, all 
particle-wall hydrodynamic interactions diminish with decreasing particle minor axis. 

One striking feature of  the wall induced drag force is that it is relatively independent of the 
particle distance from the wall. As shown above, this effect is most pronounced for oblong particles. 
On the other hand, AE~ does not vanish for z/c ~ ~ (see [19]). To rationalize this result, imagine 
a spherical particle moving with a speed U in an otherwise stagnant fluid, bounded by a solid wall. 
The particle experiences a force Fx = 6n/~cU + AF, where the perturbation AF introduced by the 
wall decays as 1/z. In our case we have a particle f i xed  in a shear f low, i.e. its relative velocity 
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Figure 2. (a) Lif t  force vs orientation angle, z/c = 1.2; (b) lift force vs dimensionless distance, 

O/n = - 0.25.  

U(z)  = sz  with respect to the local flow velocity increases proport ional ly  to z. Hence the 
per turbat ion o f  the force is o f  order  O ( 1 / z ) U ( z )  = O(1) (see [19]). 

In close vicinity to the wall z / c  - - ,  O, one can use the lubrication theory to show for the sphere 
that  (Go ldman  1967b) 

E~ -- F~  = 0.7005 × 6nllsc 2 (a/c  = 1, z / c  ~ 0). [20] 
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Therefore, the variation with z/c of  the wall induced drag force is 

0.5625 < £~ - F~ 6rc#sd < 0.7005 (a/c = 1), [21] 

which is less than +_ 11%. This variation gives an upper bound for the comparable quantity of  
spheroids. 

Torque Z,. Figure 4 presents the normalized difference AT., between the torques calculated in 
the vicinity of  the wall and in the unbounded flow (z/e = oo). Clearly, AT., depends on the particle 
orientation angle 0. Figure 4(a) shows that for the majority of  orientations and aspect ratios the 
wall tends to reduce the torque. The effect of  the wall on the flow near a spheroid with its longer 
axis oriented parallel to the wall (0 = ~/2) is to slow down the flow in the gap between the particle 
and the wall, and hence to reduce the viscous friction in "lower" (i.e. facing the wall) side of the 
particle. Hence such a particle experiences a larger torque than its counterpart in a free shear flow. 

A particle fixed in an upright position (perpendicular to the flow) experiences a torque which 
stems form the flow speed up around its surface. The effect of  the wall on the flow near a spheroid 
fixed in such a position (0 = 0) is to slow down the fluid motion along the particle surface in the 
z direction. Hence the speed up of the flow over the upper particle edge is weaker, which results 
in the concomitant reduction of  the skin friction. Accordingly, such a particle experiences a smaller 
torque than T~. These qualitative considerations are confirmed by the data shown in figure 4(b) 
for a/c = 0.2. The most dramatic influence of the wall is observed for the smallest distance 
z/c = 1.1. For  0 = ~/2 the effect of the wall is to increase the torque up to 50%. For intermediate 
orientations (about 0/~ = 0.3) the above two factors balance each other which results in a weak 
z-dependence of T,. 

The wall effect on the torque is found to diminish with the aspect ratio approaching unity, i.e. 
when the particle shape approaches to spherical. This agrees with the results of  Goldman (1967b) 
who showed that the torque acting on a stationary sphere is almost unaffected by the proximity 
of  a solid wall. In particular, when the sphere touches the wall, the torque is reduced by about 
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5 .6% wi th  respect  to its free s tream va lue  (4nflsc3). At  large d is tances  the wal l  effect for spheres  
decays  as 

T.,~ --  3 ( c / z ) 3 ,  z>>c. [22] 
T,~ I t }  
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A similar decay rate is also observed for spheroids. This is in contrast to the wall induced drag 
force which does not vanish as z ~ ~ .  

3.2. Friction coefficients of nonspherical particles in a quiet fluid near a wall 

Some of  the components of  the friction tensor K of spheroidal particles near the wall were 
studied by Happel and Brenner (1983) and by Hsu and Ganatos (1989). Analytical results 
were obtained for spherical particles by Goldman et al. (1967a, b). Some of  these components 
are presented in figure 5(a)-(c) for 0 = 0. One can generally observe that the effect of the wall is 
to increase the friction tensor components. Secondly, the wall effect decreases with decreasing 
aspect ratio, i.e. spherical particles are mostly influenced by the wall proximity. Both of these 
conclusions are consistent with those drawn above for the forces acting on particles fixed in a shear 
flow. 

Figure 6 presents the ratio Kx:/K~ as a function of the aspect ratio a/c, for z/c = 1.2 and several 
orientations. The plot shows a marked z/c-dependence of Kx-_/K~ which for nearly spherical 
particles a/c = 0.95 and z/c = 1.2 leads to about six-fold increase of the relative force with respect 
to the oblong particles of a/c = 0.1. On the other hand, the dependence of  Kx.-/K~ on the 
orientation angle 0 is weak, which is used in constructing the appropriate correlation (see appendix 
B). Note also that for spheres K~- = 0 for all z. 

Figure 7 shows the coupling component Q x of  the friction tensor. -C ,x  is the torque (in the 
y direction) due to particle translational motion parallel to the wall (in the x-direction) or, 
equivalently, the parallel drag force induced by the particle rotation. In the unbounded fluid the 
components of the coupling tensor vanish for ellipsoidal particles. This is no longer true near the 
wall where they differ from zero, also for spheres (see figure 7(b)). For  spheres Q x is negative, since 
the overall drag on the lower part of  the particle (which is closer to the wall) is larger than the 
drag on the upper part. This is also true for a spheroid the longer axis of which is perpendicular 
to the wall (0 = 0). 

The explicit form of  C,x is given by (cf. [13b]) 

C~ = - L (z'#~ - x'4~)Os, 
p 

where z' = z - z0 and x '  = x - x0 are the coordinates relative to the particle center (x0, z0) and the 
quantities q~:~, ~b~. ~ are the stress components in x-direction generically defined in [12]. For elongated 
spheroids in upright positions (0 = 0) the second term within the integral is small compared with 
the first one. The stresses ~b:~ act in the direction against the particle motion. They are larger on 
the side of  the particle surface closer to the wall, than on the opposite side. Therefore, the resulting 
torque acts clockwise, i.e. Q x < 0. 

For  a parallel orientation (0 = hi2) Q x of  a sufficiently long spheroid is positive, as was observed 
by Hsu and Ganatos (1989). At this orientation the term x'~b~. ~ is the dominant term in the above 
expression for C,x. The quantity q~ is larger at the particle half surface, which is closer to the wall 
than at the opposite half. Moreover, ~bj is positive at the part of the particle surface facing the 
flow (front side) and negative at the rear side. All this results in a hydrodynamic torque, which 
acts counterclockwise, i.e. C,x < 0. 

With decreasing aspect ratio the coupling disappears Q,. ~ 0. This accords with the general effect 
that the wall exerts on oblong particles. Namely, with decreasing ale spheroids behave like in a 
free shear flow (see similar conclusions drawn for F: and Fx). A competitive influence of  the above 
tendencies yields the most profound 0-dependence of Cv., for an intermediate aspect ratio of about 
ale = 0.7 at which value the Q=(7) curves exhibit minima for 0 ~< 0.2n and maxima for 0 i> 0.4n 
(see figure 7(a)). 

Figure 8 shows the coupling component Q:  of the friction tensor. - Q.- is the torque caused by 
particle translation perpendicular to the wall, or the perpendicular lift force arising from particle 
rotation. It vanishes for spherical particles for all z and for spheroidal particles far from the wall. 
Moreover, for the latter particles C,.: = 0 for symmetrical configurations 0 - 0, n/2. For oblique 
angles nonzero values of this coefficient stem from the asymmetry of the flow near the particle with 
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respect to its short axis. Indeed, the lower part of the spheroid which is closer to the wall, 
experiences larger drag, than the upper part. This results in a torque acting to align the particle 
longer axis parallel to the wall. Therefore, a perpendicular orientation (0 = 0) of a spheroid is an 
unstable one. 

The torque caused by particle approaching the wall decays with increasing aspect ratio, as all 
other hydrodynamic interactions of oblong particles. On the other hand Cy.-= 0 for spheres. A 
maximum of this coefficient prevails at a/c ,~ 0.7 (see figure 8). This component causes an unusual 
kinematic behavior of inertialess nonspherical particles near the wall, analyzed in the next section. 

3.3. Velocities o f  inertialess particles near the wall 

Here, and in the following, we restrict our consideration to 2D particle motion, i.e. to motion 
of bodies of revolution whose symmetry axis remains always in the plane x - z .  With expressions 
[15] and [16] at hand we may now write the equation of motion for a particle suspended in a shear 
flow W 

duk 
m--d- i- = F, -- K;;,u;- C2kco2, k = 1, 3 [23a] 

d (1=o92) = T2 - ~22~2 -- C2,u,, 
dt 

[23b] 

where the summation is over the dummy index i = 1, 3. Here 

Fk= - - £  W4b~dy, Tk= - - £  W4k~dy. 
p p 

Assuming that the particle dimensionless relaxation time is small, 

Z = ppaCS/kt << 1, 

[24] 

[25] 
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where pp is the particle density, one obtains that the terms in the r.h.s, o f  [23] balance each other. 
Then one can rewrite [23] in the form 

K:: Cr~ [26] 

The matrix in the l.h.s, o f  [26] is symmetr ic  and posit ive definite. Therefore, a unique solution for 
the velocit ies  is always obtainable.  These  were calculated numerically for various particle aspect 
ratios, orientations and distances from the wall. 
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The wall generally tends to increase the particle hydrodynamic interactions. Therefore, particles 
moving in a shear flow near the wall will have lower velocities than the fluid. This effect was 
quantified for inertialess neutrally buoyant spherical particles (Goldman et  al . ,  1967b), for which 
the translational velocity parallel to the wall surface was calculated in the forms: 

u _ 1 - 5 ( c / z ) 3  + O ( c / z )  5, z / c  ~ o% [27a] 
s z  

u 0.7431 
sz  0.6376 -- 0.200 l n ( z / c  -- 1)' z/c---* 1. 

Comparable expressions for the angular velocity are: 

s/---2 = 1 - ( c / z )  ~ + O ( c / z ) ' ,  z / c  ~ o% 

[27b1 

[28a] 

09 0.8436 
s /2  - 0.6376 - 0.200 l n ( z / c  - 1)'  z / c  ---* 1. [28b] 

The above results imply that the particle translation and rotation are retarded by the wall, whereas 
its center moves parallel to the wall surface. This is no longer the case for spheroids, which, in 
addition to the retardation along the flow direction, acquire near a wall a nonzero (lift) velocity 
component w perpendicular to the wall surface (see figure 9). Unlike the comparable situation in 
a free shear flow, near the wall translational and rotational motions of spheroidal particles are 
coupled. This coupling stems from the asymmetry of  the flow field prevailing near the spheroid, 
which results in a vertical (i.e. perpendicular to the wall) motion. 

The lift velocity arises from the vertical force F- and the resistance tensor components K~_-C,:, 
shown in figure 8. The lift velocity is an antisymmetric function of 0 with respect to 0 = re/2. It 
vanishes in all symmetrical configurations (0 = 0, re/2) and far from the wall. It reaches a maximum 
at about 0 = 0.15n (see figure 9(a)), where the asymmetry of the flow field near the particle is the 
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largest. The  quantit ies F_-, K~:, C,: vanish for the spherical form (a/c = l) and so does the lift 
velocity (see figure 9(a)). In the opposi te  limite of  oblong particles (a/c--~ 0) the above three 
quantit ies app roach  their unbounded  values (see figure 9(b)), thus allowing the only possible 
solution w -- 0 of  [26]. 
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Figure 10. Parallel velocity of inertialess particles vs orientation angle. 

Figure 10 presents the normalized horizontal (parallel to the wall) particle velocity 
component u. One can observe the retardation (u < sz), which effect depends weakly on the 
orientation. It becomes less pronounced with the particle shape deviating from spherical 
(decreasing a/c), similarly to the behavior of  w. This means that the oblong particles succeed 
to catch up with the flow. In particular, spheroids with a/c = 0.1 travel horizontally almost with 
the local fluid velocity. For  z/c > 2 the effect of the wall on u amounts to less than 5% for 
all aspect ratios. 

The velocity components u, w both characterize particle drift with respect to the fluid. The effect 
of  orientation on both of these velocity components is shown in figure 11 which presents the vertical 
velocity w vs the horizontal retardation velocity u - sz for z/c = 1.2. The different points on the 
loop-like curves correspond to different angles ranging between 0 and it. The shift along the 
horizontal axis in figure I 1 from the origin represents the retardation effect. The extensions of  the 
loops along the vertical axes quantify the lift velocity. Clearly the loops plotted for long particles 
(a/c = 0.1) are located about the origin (0,0), since they move with a horizontal velocity close to 
the flow speed and with vanishing lift velocity. Loops for spherical particles degenerate to points 
(ul~/,= ~ - sz, 0) (not shown in figure 11), since in this case the velocity is orientation-independent. 
As z/c --~ oo all loops shrink to the origin, since there w = 0 and u -- sz. 

Angular velocity. Figure 12 depicts the particle angular velocity co vs the aspect ratio. One can 
see that the wall weakly affects particle rotation (see figure 12(a)). This is especially true for oblong 
particles, the motion of which is less influenced by the wall. The retardation effect becomes more 
pronounced with increasing a/c, and is the strongest for spheres, where the deviation from the free 
stream angular velocity is still less than about 20%. 

For  spherical particles co = const, i.e. angle-independent. This is no longer true for spheroids, 
which rotate faster in the perpendicular configuration (0 = 0), since at this point the torque is 
maximal and the resistance tensor component ft.,:, is minimal. The opposite is valid for the parallel 
configuration (0 = ir/2), where, therefore, the rotation is the slowest. The angular velocity 
variations increase with decreasing a/c. 

The above a/c-dependence results in the following interesting phenomenon: for each distance 
there exists an angle 0", for which co does not depend on the particle shape. Clearly, for 
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z ~ oo 0* = n/4. With approaching the wall 0* is almost unchanged (increases by about 10%; see 
figure 12(b)). 

An intertialess nonspherical particle in an unbounded shear flow rotates while moving along the 
streamlines with the rotational period T ~ (Jeffery 1922; see [A22]). In contrast, a comparable 
particle released in a shear flow near a wall  will rotate and move both parallel and perpendicular 
to the wall. As an integral measure of  the particle angular velocity near a wall introduce a period 
T by integrating 1/m over all orientations, at a fixed point, i.e. 

T ( z / c ,  a /c )  = ~ ' (z /c ,  a /c ,  0)d0. [291 

Clearly, far from the wall this definition yields T ~. In fact, the particle will not only rotate with 
the above period, but also change its distance from the wall, which will obviously yield a rotational 
period which differs from T. On the other hand, if the particle center is held at z / c  = const it will 
not perform free rotation, since one has to apply an external force and torque to keep it moving 
along the streamline. Nevertheless, we will compare the above quantity with T ~ in order to 
characterize the cumulative effect of  the wall on the particle rotation. 

Since the wall slows down the particle rotation the period T increases with decreasing z /c .  Far 
from the wall, T ~ strongly depends on the aspect ratio a/c  and tends to infinity for oblong particles 
(as a/c  ---* O, see [A22]). This is due to the fact that a long particle aligned with the flow direction 
rotates very slowly (~o[0=~.~---~ 0 as a/c  ~ 0; see [A19]). Figure 13 presents the ratio T / T  ~ of the 
rotational periods: one in the presence of the wall to the one calculated far from the wall, vs distance 
for various aspect ratios. For z / c  > 1.5 the wall effect amounts to less than 5%. The wall exerts 
the strongest influence on those particles whose shape is close to spherical; at z / c  = 1.2 it constitutes 
about 25%. 

The above conclusions concern the value of the period relative to its unbounded free shear 
counterpart.  Calculations show that particles with a/c  = 0.8 have the shorter absolute rotational 
periods and those with a/c  = 0.1 have the longest period. 
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Figure 12. Rotational velocity of inertialess partic|es (a) vs aspect ratio; (b) vs orientation angle. 

These results serve as an indication that the true rotational periods of oblong particles, i.e. those 
accompanied by particle motion perpendicular to the wall, will also be larger than T ~. If the lift 
velocity w causing this perpendicular motion vanishes in the limit of very long particles, their period 
T, as defined in [29], has a clear physical meaning. Namely it is the true rotational period of  an 
(oblong) spheroidal particle, the center of  which freely moves along a streamline parallel to the 
wall. 
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4. C O N C L U S I O N S  

The forces and torques acting on spheroidal particles near the wall can be rationalized by 
comparing them with the interactions of: 

(i) spheres near the wall, 
(ii) spheroids far from the wall. 
Comparison with the data for spheres yields that the effect of the wall on the forces and torques 

and the corresponding component of the friction tensor decrease when particle shape deviates from 
spherical. The wall effect on all interactions of needle-like oblong particles is small. For oblique 
angles of attack the wall effect on these particles is localized on their (small) portions, which are 
closest to the wall surface. The flow around the particle part which protrudes far from the wall 
is actually unaffected by its presence. 

The effect of the wall leads to appearance of several viscous interactions which do not exist for 
spherical particles (i.e. the coupling components C,,, C,- of the friction tensor). On the other hand, 
for very small aspect ratios (oblong particles) these interactions disappear, in accordance with the 
above conclusion. These interactions reach their maxima for intermediate aspect ratios, of order 
0.74).8. 

The tensor coefficients K::, K,~, K,: and t2~?, as well as the lift, F_- and the drag, F, forces near 
the wall, depend on 0 in the same manner as their corresponding unbounded fluid counterparts. 
This allowed development of relatively simple correlations for the above quantities in wide ranges 
of the dimensionless distance from the wall, orientation angle and aspect ratio (see appendix B). 
These formulae may be used in various applications for calculating trajectories of nonspherical 
particles experiencing hydrodynamic interactions with a solid wall. 

The forces calculated for spheroidal particles in a shear flow were used to calculate their 
translational and rotational velocities in circumstances where the particle characteristic relaxation 
time is small (inertia-free particles). It is known that the wall tends to retard a spherical particle 
translating parallel to the wall surface. It was found that for nonspherical particles this retgardation 
velocity is almost independent of orientation. The retardation velocity diminishes with decreasing 
aspect ratio and is negligible for spheroids with a/c = 0.1. 

In contrast with spheres, spheroidal particles placed in a shear flow near a wall acquire a nonzero 
lift velocity, w, which is perpendicular to the streamlines. It vanishes far from the wall and also 
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in the two extremes of spherical and needle-like particles. The maximum value of w prevails at 
intermediate aspect ratios a/c ~ 0.45. Since w vanishes for oblong particles, they will rotate in a 
shear flow near a wall without drifting between the streamlines. 

The effect of the wall is to diminish the particle angular velocity (retard its rotational motion), 
with the strongest effect prevailing for spherical particles. The influence of the increasing particle 
nonsphericity (decreasing a/c) is to diminish this rotational retardation. Therefore, a nonspherical 
particle immersed in a shear flow near a wall rotates more slowly than it will in a free shear flow. 
On the other hand, of all spheroidal particles with the same longer axis rotating near the wall, the 
particle with a/c ~ 0.9 exhibits the highest absolute rotation rate. 

Acknowledgements--This work was in part supported by the Israel Ministry of Sciences and Humanities and 
by the fund for the promotion of research at the Technion. 

REFERENCES 

Bernstein, O. and Shapiro, M. (1994) Direct determination of the orientation distribution function 
of cylindrical particles immersed in laminar and turbulent shear flows. J. Aerosol Science 25, 
113-136. 

Blake, J. R. (1971) A note on the image system for a Stokeslet in a no-slip boundary. Proc. Camb. 
Phil. Soc. 70, 303-310. 

Brenner, H. (1961) Slow motion of a sphere through a viscous fluid towards a plane surface. Chem. 
Eng. Sci. 16, 242-251. 

Brenner, H. and O'Neill M. E. (1972) On the Stokes resistance of multiparticle systems in a linear 
shear field. Chem. Eng. Sci. 27, 1421-1439. 

Brown R. C. (1993) Air Filtration. An Integrated Approach to the Theory and Applications of Fibrous 
Filters. Pergamon, Oxford. 

Dabros, T. (1985) A singularity method for calculating hydrodynamic forces and particle velocities 
in low Reynolds number flows. J. Fluid Mech. 156, 1-21. 

Ganatos, P., Pfeffer, R. and Weinbaum, S. (1980) A strong interaction theory for the creeping 
motion of a sphere between parallel boundaries. Part I. Perpendicular motion. J. Fluid Mech. 
99, 739-753. 

Gavze, E. (1990a) The accelerated motion of rigid bodies in nonsteady Stokes' flow. Int. J. 
Multiphase Flow 16, 153-166. 

Gavze, E. (1990b) A boundary integral equation solution of the Stokes' flow due to the motion 
of an arbitrary body near a plane wall with a hole. Int. J. Multiphase Flow 16, 529-543. 

Gerald, C. F. and Wheatley, P. O. (1989) Applied Numerical Analysis. Addison-Wesley, Reading, 
MA. 

Goldman, A. J., Cox, R. J. and Brenner, H. (1967a) Slow viscous motion of a sphere parallel to 
a plane wall I. Motion through a quiescent fluid. Chem. Eng. Sci. 22, 637-651. 

Goldman, A. J., Cox, R. J. and Brenner, H. (1967b) Slow viscous motion of a sphere parallel to 
a plane wall II. Couette flow. Chem. Eng. Sci. 22, 653-660. 

Goldman, A. J. (1966) Ph.D. dissertation, New York University. 
Happel, H. and Brenner, H. (1983) Low Reynolds Number Hydrodynamics with Special Application 

to Particulate Media. Noordhoff, Leyden. 
Hinch, E. J. and Leal, L. G. (1979) Rotation of small nonaxisymmetric particles in a simple shear 

flow. J. Fluid Mech. 92, 591-608. 
Hsu, R. and Ganatos, P. (1989) The motion of a rigid body in viscous fluid bounded by a plane 

wall. J. Fluid Mech. 207, 29-72. 
Ingham, D. B. and Yan, B. (1994) Entrainment of particles on the outer wall of a cylindrical blunt 

sampler. J. Aerosol Sci. 25, 327-340. 
Jeffery, G. B. (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Roy. 

Soc. Lond. A102, 161-179. 
Jeffrey, D. J. and Onishi, Y. (1981) The slow motion of a cylinder next to a plane wall. Q. J. Mech. 

Appl. Math. 34, 129-137. 
Karrila, S. J. and Kim, S. (1989) Integral equations of the second kind for Stokes' flow: Direct 

IJMF 23/I--G 



176 E. GAVZE and M. SHAPIRO 

solution for physical variables and removal of inherent accuracy limitations. Chem. Eng. Comm. 
82, 123-161. 

Keh, H. J. and Tseng, C. H. (1994) Slow motion of an arbitrary axisymmetric body along its axis 
of revolution and normal to a plane surface. Int. J. Multiphase Flow 20, 185-210. 

Kim, S. and Karrila, S. J. (1991) Microhydrodynamics: Principles and Selected Applications. 
Butterworth-Heinemann, Boston, MA. 

Ladyzhenskaya, O. A. (1963) The Mathematical Theory of Viscous Incompressible Flow. Gordon 
and Breach, New York. 

O'Neill, M. E. (1964) A slow motion of viscous liquid caused by a slowly moving solid sphere. 
Mathematica 11, 67 74. 

Shapiro, M. and Goldenberg, M. (1993) Deposition of glass fiber particles from turbulent air flow 
in a pipe. J. Aerosol Sci. 24, 65 87. 

Yu, C. P., Zhang, L., Oberd6rster, G., Mast, R. W., Glass, L. R. and Utell, M. J. (1994) Deposition 
modelling of refractory ceramic fibers in the rat lung. J. Aerosol Sci. 25, 407-418. 

Yuan, F. and Wu, W. (1987) Stokes' flow of an arbitrary prolate axisymmetric body towards an 
infinite plane wall. Appl. Math. Mech. 8, 17-30. 

A P P E N D I X  A 

Forces and Velocit&s of Ellipsoidal Particles in an Unbounded Shear Flow 

Here we summarize results for the hydrodynamic forces and torques acting on prolate spheroids 
in an unbounded shear flow, as well as velocities of inertialess particles. 

First we will refer to a spheroid, described by the equation 

X 2 V2 _2 
- - - ; + ~ + ~ = a -  1, [A1] 

whose symmetry axis is parallel to the z-axis, which have a = b, c/a > 1. Define the following 
parameters 

a2c lnl-C + x~  S -  a27 
Z -  x f ~ - - a  2 L c - ~ A '  

c 2 a2c ~c + x f ~ -  a 2] 
- -  C2 __ a 2  2(c2 _ a2 )3 ,  2 ln[_c -- c2x~-~_ a2J' 

_ 2 a  2 a2c I~ + ~ - - a 2 1  
7 - c  2 _ a  2+(c  2_a2)3aln _ ~ 1 "  

The diagonal elements of the translational resistance tensor K are (Happel and Brenner 1983): 

K,'.,. = K~, 16nl~a2c 
• Z + a2~ 

and the off-diagonal elements of K are zero. 
The diagonal elements of the rotation tensor are 

fl,.,. = ~,.,._ 161t#a2c a 2 + c 2 
. . . .  3 a 2 ~  + C2~; ' 

K'-_-_- 167r#a2c 
) + c2Y ' [A2] 

~ - - -  16rctm2c [A3] 
-- 3~ 

A stationary ellipsoid in a Stokes flow experiences the force (Happel and Brenner 1983): 

I 1 2 1 1 (D2"u)o " " ' l ,  [A4] F = K .  U o + ~ ( D u ) o + ~ . ( D 4 u ) o + . . - + ( 2 n + l ) ~  + 
A 
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where the subscript  o refers to the center o f  the ellipsoid and D 2 is a differential ope ra to r  

~2 02 ~2 
92 = a 2 ~ + a 2 ~ -  + C 2 --.(~Z2 [A51 

The  torque,  acting on a s ta t ionary  ellipsoid relative to its center o (Happe l  and Brenner  1983) is: 

[ ] To = Q" ( O  × U)o + ~ (D2~  × u)o + . ( D 4 ~  x U)o + " ' "  , [A6] 

where Q is a diagonal  tensor  

Q,.,. = a,.y - a2 + C2 , O:: - 2 a  2 [A7] 

and O is a vector  differential ope ra to r  

a ~y a = i 'a2 ~ x  + i 'a2 + i:c2 8-z " [A81 

F o r  a shear flow only the first terms in [A4] and [A6] differ f rom zero. 
Consider  now an ellipsoid whose axis o f  symmet ry  lies in the (x, z) plane and forms  an angle 

0 with the posit ive direction o f  the z-axis (see figure I). Denot ing  the body-fixed coordinates  by ', 
and defining the or ienta t ion transit ion matr ix  M 

.=[Co011 -on°] ,A9, 
Lsin0  0 c o s 0  J 

one has the following t rans format ions  between the body-fixed and labora to ry  f rame coordinates  

u '  = M u ,  K = M - I K ' M ,  f~  = M - J ~ ' M .  [A10] 

Specifically, we will have for  K 

l o ] 
K~,- cos 2 0 + K_-'_- sin 2 0 0 ½(K_-': - ~,)sin 20 

K =  0 K,,',. 
½(K:" -- K~.,)sin 20 0 K,~,. sin 2 0 + K': cos 2 0J  

[Al l ]  

with K~,., K:': given by [A2]. Therefore ,  the force acting on the spheroid in a shear flow 

I1 = 
[A12] 

is obta ined  f rom [A4], [A11], [A12] in the form: 

F = [AI31 
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The t r ans fo rmat ion  of  f l  is the same as for  K (see [AI 1]). In the present  case the only term o f  
interest is ~ , ,  which remains  unchanged.  The  torque in the space f rame is: 

One can fur ther  calculate 

Q z X  ~ ' =  

To = M ~ Q " ( ~ '  × Mu)  = M - t ( Q  ' × ~ ' ) ' M u .  

0 -- Q~'c2 63 ~3 1 Oz ~ - Q ; ~ b  ~ 

63 -- Q~'c2 Oz' 0 - Q(,a 2 

, 2 6 3  & 0 
- Q::b ~ - Q;:a2 63X' 

The shear flow [A12] is t r ans formed  to 

[A14] 

[A 1 51 

= (ii o°S °l sin , 16, 

63z 63z 63z 
63 x,  = Mr3 = - sin 0, 633,, - M2~ = 0, 63z' - M33 = cos 0. [AI7] 

After  substi tut ing the above formulae  in [A14] we obta in  the following expressions for the torque 
in the space f rame 

t o ) To = s Q,, (c2 COS2 0 + a 2 sin 2 0) " 

0 

[A18I 

The velocities o f  inertialess particles are determined f rom [21]. Fo r  ellipsoids in an unbounded  fluid 
the coupl ing tensor  is zero. Subst i tut ion of  [A1 1], [A13] and [A18] in [21] yields 

= s  I z ] 0 
¢2 COS 2 0 q-- a 2 sin 2 0 

C 2 + a 2 

One can see that  at  0 = + rt/4 ~o = 1/2 for  all values of  the aspect  ratio a/c. 
U p o n  subst i tut ion co = dO/dt, one obtains  f rom [A19] the following equat ion  for 0: 

[A19] 

d(20) 1 -- 72"~ cos (20 ) l  ' [A20I 

which subject to the initial condi t ion 0 ( 0 ) =  0 possesses the solution: 

O(t) = arctanI~ tan(s  l - ~ 7 2 ) l .  [A21I 

One can see that  the above  is a periodic funct ion with per iod 

= s  7 +  [A221 

which clearly reproduces  the result o f  Jeffrey (1922) (see also Hinch and Leal 1979). 
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A P P E N D I X  B 

Correlation Formulae for Forces and Resistance Tensor Components 

On the basis o f  the analyses o f  results, we propose  simple analytical approximat ions  for 
the various components ,  obtained by the regression analyses. For  brevity we denote 
7 = a/c and Y = z/c. The accuracy o f  the proposed formulae is evaluated by compar ing  
approximate  analytical, ( f )  and calculated numerical value ( f )  o f  the corresponding 
components .  Explicitly, two types o f  errors are calculated: The integral error (based on the L2 
norm)  

and the maximal  error  E~: 

E ~ ( f )  = o.<~.<hmax f ( 3 ~ x )  f ( x )  . [B2] 

Perpendicular (lift)force component F. 

Analysis o f  the numerical  data  shows that  the ratio F:/F: ~ is a lmost  independent o f  0. This 
suggests an approximat ion  

F- 0.43 + 1.537 0.667 
F S -  1 + ~ + y ~ ,  [B3] 

which is valid for 0.1 < a/c < 0.9 with errors E2 = 0.009 and E~ = 0.09. 

Parallel (drag)force Fx 

We will approximate  E~ in the form: 

F,  
= Q(:~, 7)cos 20 + R(2, 7). [B4] 

I~CSZ 

In view o f  [28] Q vanish as 7 ~ 1, so that  R(Y, 1) represents the force acting on a sphere. The 
following approximat ions  are sought for these two functions: 

1 (a2 + b:7 + c272), [B5a] Q(z~, 7) = (a~ + b,7 + c,72) + z 

1 
R(& ~) = (d, + e,7 +)q7 : )  + ~ (d2 + e27 +J~72). [B5b] 

Table B I shows least square approximat ions  for the coefficients appearing in [B5a, b]. 

Table B1. Computed values of the coefficients in [B5a, b] for 1.1 < ~ < 10 

a, b, c, d, el f E,_ E, 
i = 1 1.158 -- 0.237 -- 0.971 4.627 15.91 - 2.193 0.005 0.03 
i = 2 0.235 2.702 -- 2.91 0.643 5.960 6.295 0.005 0.03 
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One can see that the least squares method indeed yields Q(i ,  l) indeed close to zero. In table 
B2 we compare the values of  R(5, 1) with our computed results for a sphere. 

Table  B2. C o m p a r i s o n  between the a p p r o x i m a t e d  and 
compu ted  values of  F~/pcsz for a sphere 

5 1.1 1.2 1.5 2 3 5 10 

F,/#cS~ 30.54 29.49 27.19 24.93 22.72 21.03 19.84 
R(5, 1) 30.07 29.09 26.94 24.79 22.64 20.92 19.63 

TorqueT, 

The approximation is sought in the form 

T , -  T,:~ ~ 1 {[a,~, + b,72 + c,72 sin(rtT)]cos 20 + [d~ + e,7 +f72]}.  
ttsc 3 ~ ,  ~ 5 ~ [B6] 

The regression and the E2 are presented in table B3 for 1.1 ~ 5 ~< 10. The E~ error is not given 
since it becomes infinite in cases where T , -  T; ~ vanishes at 0 = 0.3re 

Table  B3. The regression coefficient and  the er ror  for ( T , -  T," )/#sc ~ 

a, b, c~ d, e~ f, E2 

i =  I --3.11 3.04 - 1 . 3 4  - 0 . 0 5 6  --0.261 0.444 0.033 
i = 2 0.488 - 0 . 4 3 2  0.784 -- 0.069 0.272 -- 1.016 

Friction coefficient K:: 

An approximation is sought in the form 

Kzz 1 K5 ~5 [a + b 7 + c72]cos 20 + dl -'1- d2 d3 1 . 5 + ~ + ~ [e7 + j~;2]. [B71 

Table B4 shows the regression coefficients and the error for the three domains: 1.1 ~< 7 ~< 0.95, 
0~< 0~<0.5n and 1.1 ~<~< 10, 1.2 ~<5~< 10, 1.3 ~<~< 10. 

Table  B4. The regression coefficients and  errors  for K_-:/K__~ 

a b c d, d, d~ e f E2 E~ 

1.1 ~< .5 <-N 10 - 0.195 0.611 0.030 1.120 - 0 . 4 0 3  1.068 0.437 4.523 0.07 0.40 
1.2 ~< 5 ~< 10 - 0.178 0.397 - 0 . 0 3 4  1.069 0.035 0.389 1.389 2.999 0.03 0.24 
1.3 ~< ~ ~< 10 - 0.171 0.242 0.034 1.046 0.245 0.030 1.867 2.273 0.02 0.16 

Friction coefficient K~, 

We look for an approximation in the form 

Kvx 
K~, ~ [a(5) + b(5)7 + c(Z)yZ]cos 20 + d(£) + e(f)7 + f(:?)72. [B8] 

For the domain 1.1 ~< y ~< 0.95, 1.1 ~< :~ <~ 10, 0 ~< 0 < 0.5~ the following approximation is found 
by the least squares fit: 

K~, 0.061 + 0.3117 - 0.33872 0.255 - 0.178 + 0.858~, + 0.30372 [B9] 
K---~= ~2 cos 2 0 +  1.012+ z- + :72 

The accuracy of  this approximation is characterized by the integral error E2 = 0.011 and the 
maximum error E~ -- 0.061. Of  742 points used only at 16 the error exceeded 0.05. These points 
were all located at :7 = 1.1, 0 ~< 0 ~< re/4 and 0.3 ~< 7 ~< 0.95. 
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Frict ion coeff icient K,.: 

The  ra t io  K , : / K 5  is a p p r o x i m a t e d  by  

K,_- 1 [a + by + c72]c0s(20) + d, + d2 1 K---7~.. ~ ~?--5 z + ~ [d3 + e7 +fy2].  [BI0] 

T h e  regress ion  coefficients a n d  the e r rors  for  the d o m a i n s  0.1 ~< 7 ~< 0.95, 0.05rr ~< 0 ~< 0.45rr, 
1.1 ~< :? ~< 10 a n d  1.2 ~< :? ~< 10 are g iven  in  tab le  B5. 

F o r m u l a  [B10] is n o t  val id  for  o r i e n t a t i o n s  0 = 0 a n d  0 = rt/2 since at  these angles  K~ = 0. F o r  
b o t h  cases, the largest  e r rors  are  res t r ic ted to a few po in t s  only.  

Table B5. The regression coefficients and errors for K,.:/K~ 

a b c d, d2 d~ e f E2 E. 

1.1 ~< _~ .%< 10 -- 0.086 0.725 -- 0.307 1.083 0.299 0.124 2.718 3.469 0.04 0.42 
1.2 ~< ~ -%< 10 -- 0.129 0.852 -- 0.659 1.056 0.535 --0.234 3.045 2.911 0.02 0.14 

Frict ion coeff icient £2,, 

This  c an  be a p p r o x i m a t e d  in  the  fo rm 

fL.,. d2 d3 + e? + f?2 
fl--~ ,-~ d~ + --c + :?2 [B111 

.. 7 

The  va lues  o f  the regress ion  coefficients a n d  the e r rors  in  the  d o m a i n  0.1 ~ 7 -%< 0.95 0 ~ 0 ~ n /2  
1.1 ~ g ~ 10 are  g iven  in  table  B6. 

Table B6. Regression coefficients and errors for l),,./f~ 

d, d2 d~ e f E,_ E~ 

1.012 -0.137 0.264 0.116 0.054 0.007 0.11 

Coupl ing coeff icient C,..,- 

W e  seek a n  a p p r o x i m a t i o n  for  C,,,- in  the fo rm 

c,, 1 ~ ± 
" ~ ~ [aT + b? 2 + c74]c0s(20) + ~ + :?, [e7 + f?2 ] .  

tc2 i=0 
[B12] 

The  a p p r o x i m a t i o n  m a y  be used  in di f ferent  regions ,  n a m e l y  in  1.2 ,%< :? ~< 1.6 (with  n = 3) a n d  in  
1.6<2-%< 10 ( w i t h n = 2 ) .  

The  va lues  o f  the regress ion  coefficients a n d  the e r ro r  E2 are g iven in  table  B7. The  e r ro r  E~ 
m a y  n o t  be g iven  since it b eco me s  inf ini te ly  large w h e n  C,, = O. 

Table B7. Regression coefficients and errors for C,, 

a b c d, d_, & & e f E., 

1.2 ~< ,~ .%< 1.6 - 3.91 - 1.43 5.03 2.90 - 13.49 21.27 - 11.43 - 1.08 -0.13 0.07 
1.6 < zT~< 10 - 2.65 - 0.118 2.69 -0.011 0.142 --0.366 - -  - 0.424 0.209 0.08 

Coupl ing coefficient C,-- 

Th i s  coefficient was a p p r o x i m a t e d  by: 

1 
C,.-- ~ {[a,7Ja + (bz + c,?2)sin(rrT)]sin(20) + d,72 sin(n~,)sin(40)} :?2 ~c 2 

1 
+ {[a27 '/2 + (b2 + c2?2)sin(rrT)]sin(20) + &72 sin(rrT)sin(40)} z7--3 • [Bl3]  
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T h e  r e g r e s s i o n  coef f i c ien t s  a n d  t he  e r r o r  E2 a re  g i v e n  in  t a b l e  B8. 

I t  m a y  be  c l ea r l y  seen  t h a t  t h e  s e c o n d  h a r m o n i c  s in (40 )  h a s  a s m a l l  w e i g h t  in  t he  a p p r o x i m a t i o n  

fo r  :? > 1.6. 

Table B8. Regression coefficients and the error for C:, 

Range a~ b~ cl dl a,_ bz c2 d,_ E,_ 

1.2 <~ 5 ~< 1.6 -4.61 4.62 - 10.20 - 4.55 7.97 - 5.47 23.47 7.32 0.05 
1.6~<z7~< 10 0.016 1.16 0.767 -0 .165  0.785 -0 .105  5.834 0.483 0.03 


